Login

Please fill in your details to login.





micro:bit - slalom with micropython

This page is mainly about micro:bit - slalom with micropython
Move the micro:bit from side to side to avoid the obstacles!

# Simple Slalom by Larry Hastings, September 2015
#
# This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_x - min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12


while True:

    i = m.Image('00000:'*5)
    s = i.set_pixel

    player_x = 2

    wall_y = -1
    hole = 0

    score = 0
    handled_this_wall = False

    wall_speed = wall_min_speed
    player_speed = player_min_speed

    wall_next = 0
    player_next = 0

    while True:
        t = m.running_time()
        player_update = t >= player_next
        wall_update = t >= wall_next
        if not (player_update or wall_update):
            next_event = min(wall_next, player_next)
            delta = next_event - t
            m.sleep(delta)
            continue

        if wall_update:
            # calculate new speeds
            speed = min(score, speed_max)
            wall_speed = wall_min_speed + int((wall_max_speed - wall_min_speed) * speed / speed_max)
            player_speed = player_min_speed + int((player_max_speed - player_min_speed) * speed / speed_max)

            wall_next = t + wall_speed
            if wall_y < 5:
                # erase old wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 0)

        wall_reached_player = (wall_y == 4)
        if player_update:
            player_next = t + player_speed
            # find new x coord
            x = m.accelerometer.get_x()
            x = min(max(min_x, x), max_x)
            # print("x accel", x)
            s(player_x, 4, 0) # turn off old pixel
            x = ((x - min_x) / range_x) * 5
            x = min(max(0, x), 4)
            x = int(x + 0.5)
            # print("have", position, "want", x)

            if not handled_this_wall:
                if player_x < x:
                    player_x += 1
                elif player_x > x:
                    player_x -= 1
            # print("new", position)
            # print()

        if wall_update:
            # update wall position
            wall_y += 1
            if wall_y == 7:
                wall_y = -1
                hole = random.randrange(5)
                handled_this_wall = False

            if wall_y < 5:
                # draw new wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 6)

        if wall_reached_player and not handled_this_wall:
            handled_this_wall = True
            if (player_x != hole):
                # collision! game over!
                break
            score += 1

        if player_update:
            s(player_x, 4, 9) # turn on new pixel

        p(i)

    p(i.SAD)
    m.sleep(1000)
    m.display.scroll("Score:" + str(score))

    while True:
        if (m.button_a.is_pressed() and m.button_a.is_pressed()):
            break
        m.sleep(100)



Catalogue

All third party documentation is provided purely for educational purposes and must not be distributed. If you are the copyright owner of these documents and you do not with me to make them available here, please get in touch.
filetype
3.2 KiB
Last modified: August 3rd, 2022
The Computing Café works best in landscape mode.
Rotate your device.
Dismiss Warning